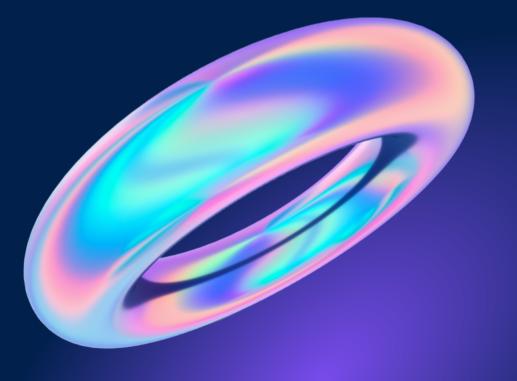
BERT Algorithm

Chavi & Rukmini



- Bidirectional Encoder Representations from Transformers
- Machine Learning framework for Natural Language Processing (NLP)
- Helps to learn contextual relationships between words



HOW DOES BERT WORK?

- Tokenisation
- Bi-directional Transformer Encoder
- Pre Training:
 - a. Masked Model Language
 - b. Next Sentence Prediction
- Fine-Tuning on Tasks

Tokenisation

Input sentence:

"I loved the movie, it was amazing!"

Tokenised sentence:

["I", "loved", "the", "movie", ",", "it", "was", "amazing", "!"]

The WordPiece algorithm further splits each word in the input text into subwords. For instance, the word "loved" may be split into "love" and "##d", where "##d" represents a suffix.

Token: I

Embedding: [0.12, 0.45, -0.63, ...]

Token: loved

Embedding: [0.53, -0.23, 0.17, ...]

Token: the

Embedding: [0.04, -0.56, 0.89, ...]

Token: movie

Embedding: [0.87, 0.23, -0.42, ...]

Word Embedding

Transformer Encoder


```
I loved the movie, it was amazing!
(Token Embedding layer)
Embedding1 Embedding2 Embedding3 ... EmbeddingN
(Transformer layer 1)
Embedding1' Embedding2' Embedding3' ... EmbeddingN'
(Transformer layer 2)
Embedding1'' Embedding2'' Embedding3'' ... EmbeddingN''
```

```
+----+
          | Input
          | Embedding |
          +----+
          +----+
          | Transformer|
          l Encoder
| Self-
                I Feed-
| Attention |
                | Forward
       +----+
       | Contextual
       | Embeddings |
       +----+
```

Pre-Training

MLM: Masked Model Language

Original sentence: I loved the movie, it was amazing!

Masked sentence: [MASK] loved the movie, it was amazing!

NSP: Next Sentence Prediction

I love Pizza. Pizza is my favorite food. (correct sentence pair)
The cat sat on the mat. It was a sunny day (incorrect sentence pair)

Fine-Tuning

- Fine-tuning involves training the model on a specific task with taskspecific labeled data.
- To fine-tune the model, we first add a classification layer on top of the pre-trained BERT model.

Summary

Input Sentence: "I loved the movie, it was amazing!"

```
+-----+
|Tokenization |
+-----+
|
V
```

Tokenized Sequence: ["[CLS]", "I", "loved", "the", "movie", ",", "it", "was", "amazing", "!", "[SEP]"]

```
+-----+
| BERT Encoding
+-----+
|
```

Contextualized Embeddings: [CLS] embedding, I embedding, loved embedding, the embedding, movie embedding, , embedding, it embedding, was embedding, amazing embedding, ! embedding [SEP]

```
+-----+
| Classification |
+-----+
|
V
```

Prediction: Positive

BERT MODEL SIZE & ARCHITECTURE

BERT-Base

- 12transformerlayers
- 110 million parameters
- can process input sequences of 512 tokens

BERT-Large

- 24transformerlayers
- 340 million parameters
- can processinputsequences of1024 tokens

93.1 SQuAD v1.1 & v2.0

86.3 SWAG

82.1 GLUE

BERT's Performance - SQuAD1.1 Leaderboard

Rank	Model	EM	F1	
1 [Oct 05, 2018]	BERT (ensemble) Google Al Language arrive.org/abs/180.04805	87.433	93.16	
-	Human Performance Stanford University (Rajpurkar et al. '16)	82.304	91.221	
2 [Sep 09, 2018]	ninet (ensemble) Microsoft Research Asia	85.356	91.202	
3 [Jul 11, 2018]	QANet (ensemble) Google Brain & SMU	84.454	90.490	

BERT's Performance - SWAG (Situations With Adversarial Generations)

System	Dev	Test		
BERTLARGE	86.6	86.3		
Human (expert)	_	85.0		
OpenAl GPT	-	78		
ESIM+GloVe	51.9	52.7		
ESIM+ELMo	59.1	59.2		

BERT's Performance on GLUE:

Task	Average	Grammatical	Sentiment Analysis	Similarity	Paraphrase	Question Similarity	Contradiction	Answerable	Entail
BERTLARGE	82.1	60.5	94.9	86.5	89.3	72.1	86.7/85.9	92.7	70.1
BERTBASE	79.6	52.1	93.5	85.8	88.9	71.2	84.6/83.4	90.5	66.4
OpenAl GPT	75.1	45.4	91.3	80.0	82.3	70.3	82.1/81.4	87.4	56.0
Pre-OpenAl SOTA	74.0	35.0	93.2	81.0	86.0	66.1	80.6/80.1	82.3	61.7
BiLSTM+ELM o+Attn	71.0	36.0	90.4	73.3	84.9	64.8	76.4/76.1	79.8	56.8

ENVIRONMENTAL IMPACT

Energy usage

 Bert requires large amount of computational resources like GPU's and TPU's which consume a significant amount of energy.

Indirect impacts

 The requirement of data centers and cloud computing infrastructure contribute to the global carbon footprint.

Open Source Power of BERT

- BERT's source code is publicly accessible that allows BERT to be more widely used all around the world.
- Thousands of open-source and free, pre-trained BERT models are currently available for specific use cases if you don't want to fine-tune BERT

Prepare the Data

- Data Collection
- Text Cleaning
- Text Preprocessing
- Labeling
- Splitting the Data

```
# Pre-Processing ------
# Import Data from Kaggle
data1 <- read.csv("train.csv")
data2 <- read.csv("test.csv")
data <- bind_rows(data1,data2)

# Data Pre-Processing
data$tweet <- gsub("[^[:alpha:]]", " ", data$tweet) #Remove non-alphabetic c
data$tweet <- gsub("[[:space:]]+", " ", data$tweet) #Remove spaces
data$tweet <- trimws(data$tweet) #Remove trailing whitespaces</pre>
```

How to use BERT

- Fine-tune BERT
 - Load the pre-trained BERT model
 - Prepare the data
 - Define the fine-tuning task
 - Initialize the classification layer
 - Train and evaluate the model
 - Predict on new data

How to use BERT

Prediction

 After the model is trained, we can input text data into the BERT model and this will display an output which is the probability distribution over the sentiment labels

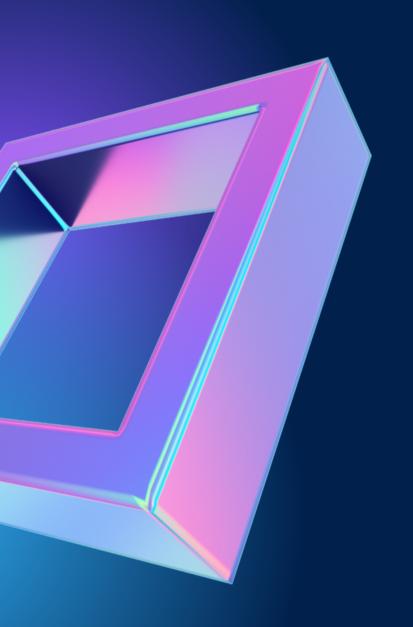
Common BERT Queries

What makes Bert different

Time taken to fine-tune Bert

Can BERT be used with Tensorflow?

conclusion



BERT takes into account the entire context of a sentence using the bidirectional training

Uses MLM modeling, hence it is trained to predict based on context

The performance of this algorithm can be made better through fine tuning

BERT has had a big impact on NLP and continues to be a big area of research as it is still improved upon