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1 Introduction

In today’s digital age, the ability to extract
meaningful insights from multimedia data
has become increasingly valuable across var-
ious domains. One such area of interest is
age prediction where advancements in tech-
nology enable us to infer the age of indi-
viduals based on visual and auditory cues.
The necessity for age prediction using mul-
timodal inputs like images and audio arises
from wide-ranging applications and implica-
tions across different sectors. From target
advertising and personalized content recom-
mendations to healthcare assessment and bio-
metric authentication, the ability to accu-
rately predict age from multimedia data holds
immense potential for enhancing user expe-
riences and informing decision-making pro-
cesses. In the realm of online safety, the
pressing issue revolves around implementing
reliable age verification mechanisms through
age verification to prevent underage users
from accessing potentially harmful or inap-
propriate content, thus fostering a safer digi-
tal environment for individuals of varying age
groups. This project delves into the develop-
ment and exploration of age prediction mod-
els leveraging on a multimodal approach that
relies on video input.

2 Dataset

2.1 Collection

Obtaining a diverse and representative
dataset for training our multi-modal age
prediction model posed several challenges.
Given the complexity of acquiring clean and
varied video data, we adopted a hybrid ap-
proach by compiling samples from both image
and audio datasets as separate modalities.
This decision was made to ensure enough
data for training while maintaining diversity
across different modalities.

Our dataset comprises samples sourced
from various publicly available datasets,
which can be summarized in the table below:

Audio Speech Datasets
CREMA-D (Cheyn-
eyComputerScience,
n.d.)

An emotional
multimodal actor
dataset of 7,442
original clips from
91 actors. These
clips were from 48
male and 43 female
actors between the
ages of 20 and 73
coming from a va-
riety of races and
ethnicities (African
American, Asian,
Caucasian, Hispanic
and unspecified).

english children
(James et al., 2016)

The dataset con-
tains audio record-
ings (lossless WAV)
of 11 young children
(age M=4.9 years
old; 5 females, 6
males).

Eugene Children’s
Story Corpus
(ECSC) (Kallay, J.,
& Redford, M. A.,
2020)

The Eugene
Children’s Story
Corpus (ECSC)
includes 367 au-
dio recordings and
transcriptions of
structured spon-
taneous narratives
elicited from a total
of 188 typically de-
veloping school-aged
children.

SpeechAccent
(Speech Accent
Archive, 2017)

This dataset con-
tains 2140 speech
samples, each from a
different talker read-
ing the same read-
ing passage. Talkers
come from 177 coun-
tries and have 214
different native lan-
guages. Each talker
is speaking in En-
glish.

Table 1: Details of speech audio datasets
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Image Datasets

Dataset Description
UTKFace
(UTKFace, n.d.)

A large-scale face
dataset with long
age span. The
dataset consists of
over 20,000 face im-
ages with annota-
tions of age, gen-
der and ethnicity.
The images cover
large variations in
poses, facial expres-
sion, resolution etc.

All-Age-Faces
(JingchunCheng,
n.d.)

Contains 13,322
face images (mostly
Asian) distributed
across all ages (from
2-80) including 7381
females and 5941
males.

Table 2: Details of face image datasets

2.2 Sampling

The final dataset consists of 57,330 samples -
19,916 audio samples and 37,414 image sam-
ples.
To address class imbalances from the vari-
ous datasets and to maintain diversity, we
ensured that our sampled data mirrored the
distribution of population statistics – this is
done in the context of Singapore, with data
from SingStat (Population and Population
Structure, n.d.).

Here, we examine the population distribution
of Singapore:

Figure 1: Population distribution of Singa-
pore

However, the initial collected facial image
dataset was not well-varied:

Figure 2: Initial age distribution of facial
image dataset (top right of the image)

Figure 3: Initial gender distribution of im-
age data

According to the population distribution in
Figure 1, our dataset of facial images was
re-sampled to mirror the population distri-
bution.

Figure 4: Age distribution of re-sampled fa-
cial image dataset (top right of the image)

Figure 5: Gender distribution of image data
after re-sampling

Our samples were banded for the sake of clas-
sifying and mirroring the banded age distri-
butions as extracted from SingStat (Popula-
tion and Population Structure, n.d.), however
as we want to do an age regression, our sam-
pled input distribution can be visualized by
specific ages as below:

Figure 6: Age distribution by individual age
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Similarly, there was a sincere attempt to dis-
tribute the age for our audio training data
as well. However, due to the lack of readily
available speech datasets with exact age la-
bels and in an effort to keep the size of the
dataset adequate, this is the distribution of
our final dataset:

Figure 7: Distribution of ages of audio
dataset

To evaluate the performance of our age pre-
diction model effectively, we divided the
dataset into training, validation, and testing
sets. Stratified sampling based on age was
employed to ensure that each set maintains a
representative distribution. The training set
comprises 80% of the data, while the valida-
tion and testing sets consist of 10% each.

2.3 Data Pre-processing

2.3.1 Feature Extraction for Image

We opted to apply a series of filters, includ-
ing grayscale conversion, Gaussian blurring,
Gabor filtering, and Sobel + Canny edge de-
tection, to explore potential features relevant
to age prediction within facial images.

Figure 8: Features extracted from image
data

After applying various filters to a sample of
five images, it became apparent that each
filter highlighted different facial features.
Particularly, while the canny edges filter
did capture distinctions within age groups
by resembling wrinkle lines, it was noted
that this method might not be the most
reliable due to inconsistencies stemming from
variations in image quality and contrast.
For instance, one of the images displayed
minimal lines (most-left sample), leading to
challenges in accurately extracting features.

Considering this, we explored Histogram
of Oriented Gradients (HOG) as a means
of image feature extraction, which may be
a more reliable basis of features for our
model. HOG works by capturing the local
gradient information through quantifying the
distribution of gradient orientations within
localized regions– HOG features can be
extracted from images using the scikit-image
library, and visualized as below:

Figure 9: Feature extraction from images -
HOG

HOG is usually done on localized regions as
shown in Figure 9. However for a simple ex-
ample, a full image is passed here to visualize
how a full image could be represented:

Figure 10: HOG representation of a full im-
age
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2.3.2 Feature Extraction for Audio

For the task of age prediction, feature extrac-
tion plays a pivotal role in transforming raw
audio data into a comprehensible format that
deep learning models can efficiently process.
This process involves converting raw audio
signals into a set of representative features,
capturing the essential characteristics of the
audio signal relevant to the task of age pre-
diction. For the task at hand, these are the
features extracted (using the Python library
librosa):

i. Mel-Frequency Cepstral Coeffi-
cients (MFCCs): represent the energy
distribution across different frequency
bands, according to the Mel-scale.

ii. Spectral Centroid: indicates where
the ”center of mass” of the spectrum is
located. In other words, it represents the
weighted mean of the frequencies present
in the signal.

iii. Spectral Bandwidth: measures the
width of the frequency range in which
most of the signal’s energy is concen-
trated.

iv. Spectral Rolloff: is a measure of the
frequency below which a certain percent-
age (typically 85-95%) of the total spec-
tral energy is contained.

v. Spectral Contrast: measures the dif-
ference in magnitude between peaks and
valleys in the spectrum of an audio sig-
nal.

Figure 11: Correlation heatmap of audio
features

3 Model Exploration

In this section, we explore various approaches
to create a robust age prediction model, rang-
ing from traditional machine learning meth-
ods to more modern transfer learning tech-
niques. Each approach offers distinct advan-
tages and challenges, which we analyze in
the context of our multimodal age prediction
task.

3.1 Traditional Machine Learn-
ing

3.1.1 Image Models

With these HOG features, we trained a
support vector regression (SVR) model that
had the following results:

Metric Value
Mean Absolute
Error (MAE)

15.37

Mean Squared
Error (MSE)

358.16

Root Mean Squared
Error (RMSE)

18.96

Table 3: Results of Image SVR model

3.1.2 Audio Models

In the training of models using the audio
data, we initially employed two distinct re-
gression approaches to predict age based on
vocal characteristics: a Gaussian Mixture
Model (GMM) and a Random Forest classi-
fier, each utilizing 13 Mel Frequency Cepstral
Coefficients (MFCCs) as features.

i. Gaussian Mixture Model (GMM)
The GMM approach, which models the
distribution of the MFCCs using a mix-
ture of Gaussian distributions, was antic-
ipated to effectively capture the nuances
in audio data attributable to different age
groups. A GMM with five pre-defined
components was initialized and trained
on the compiled feature set. Evaluation
of the GMM model’s performance relied
on the log-likelihood metric, offering in-
sights into the model’s fit to the training
data and its ability to generalize to un-
seen testing data. As seen in the results
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below, its performance was sub-optimal.

Log-likelihood
Metric

Value

Training -56.98
Testing -48.81

Table 4: Results of GMM model

These findings underscore the necessity of
increasing the complexity of the models
or potentially integrating more discrimi-
native features to improve the accuracy of
age prediction based on vocal attributes.
This could involve exploring additional or
alternative feature sets that capture more
detailed aspects of the voice or adjusting
model parameters to enhance their learning
capacity.

Subsequently, Principal Component Analy-
sis (PCA) was performed, and a scatter plot
of the data reduced to two principal compo-
nents derived from MFCC features was cre-
ated. The PCA graph indicates that the fea-
tures, when represented in the reduced PCA
space, do not demonstrate clear boundaries
between different age groups. This lack of
separation suggests that the GMM, in con-
junction with diagonal covariance, may not
possess sufficient complexity to adequately
model the data distribution, potentially lead-
ing to overfitting.

Figure 12: Principal component analysis on
MFCC features

ii. Random Forest Classifier
The Random Forest classifier, known for
its robustness and ability to handle over-
fitting through ensemble learning, was

implemented alongside the Gaussian Mix-
ture Model (GMM) to assess its effectiveness.

Metric Value
Mean Squared
Error (MSE)

84.58

R-sqaured
value

0.35

Table 5: Results of random forests model

To gain insight into the model’s behavior, a
scatter plot and a learning curve were plot-
ted.

Figure 13: Scatter plot result of random
forests result

The scatter plot visualization of actual vs.
predicted ages shows that the model’s predic-
tions are not perfectly aligned with the ideal
scenario. The plot exhibits broad dispersion,
reflecting variability in the model’s age pre-
diction accuracy across different age groups.
Predictions are denser around the 20 - 60 age
range, hinting that the model performs bet-
ter for middle-aged individuals. The spread
of predictions for a given actual age indicates
inconsistencies in the model, as seen in the
wide variance along the y-axis.

3.2 Deep Learning

Aside from exploring traditional methods of
machine learning that involved simple fea-
ture extraction and regression analysis, deep-
learning methods were also explored.

3.2.1 Image Models

I. Convolutional Neural Network for
Image
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A CNN for age regrssion was devel-
oped. The model uses the Mean Squared
Error (MSE) as its loss function during
training to improve accuracy by closing the
difference between predicted and true ages.
The images were pre-processed to resize
them to 128x128 pixels.

The CNN implemented consists of two
convolutional layers followed by max-pooling
for downsampling, along with two fully
connected layers for regression-based age
prediction.

The model leverages Rectified Linear Unit
(ReLU) activation functions and dropout
regularization to introduce non-linearity
and prevent overfitting, respectively, while
employing Mean Squared Error (MSE) as
the loss function for training.

The CNN model initially demonstrated
promise; the results are detailed below:

Metric Value
Mean Squared
Error (MSE)

85.00

Root Mean Squared
Error (MSE)

9.22

Training Loss 5.90
Validation Loss 88.59

Table 6: Results of CNN for image

The model performs poorly on unseen data,
which can be observed from the validation
loss being 88.59 and the training loss being
5.90. Despite its suitability for regression-
focused tasks like age prediction, evidenced
by the results in Table 6, the observed overfit-
ting prompted a decision to forego its further
utilization.

II. Transfer Learning

There has been ongoing research on
exploring different ways to predict ages from
images using pre-trained models. The models
described below, like ResNet50, VGG-16,
MobileNetV2, DenseNet, CNN and CLIP, of-
fer different ways to tackle the same problem.
This section will describe how each model
was trained and how well they predict ages.

Model Training
Loss

Validation
Loss

Accuracy

ResNet50 95.93 111.94 31.70%
VGG-16 515.08 482.00 16.60%
MNetv2 24.73 62.27 63.70%
DenseNet 480.30 482.11 18.20%
CLIP 449.02 471.52 22.41%

Table 7: Results of various models for image

i. ResNet50

The ResNet-50 model is trained us-
ing a custom dataset class that loads
images, applies various transforma-
tions for data augmentation during
training, and minimal transforma-
tions for validation and testing. The
training set undergoes transforma-
tions like resizing, random horizon-
tal flips, rotations, and color jitter-
ing to enhance the model’s ability
to generalize to unseen data. These
images are then normalized before
being fed into the ResNet-50 archi-
tecture. The model’s last fully con-
nected layer is modified for age pre-
diction, and the entire network is
trained using cross-entropy loss and
the Adam optimizer.

ii. VGG-16

Initially, a pre-trained VGG-16
model without its top (fully con-
nected) layers is loaded, with the in-
tention of leveraging its learned fea-
tures for the task at hand. The
loaded model’s layers are then frozen
to prevent further training of these
pre-existing weights. Next, addi-
tional layers are appended to the
model to enable age prediction.
This includes a flattening layer fol-
lowed by a densely connected layer
with 512 units and ReLU activation,
along with dropout regularization to
mitigate overfitting. Finally, a sin-
gle neuron output layer with linear
activation is added to predict the
age. To train the model, data gen-
erators with augmentation are em-
ployed. These generators prepro-
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cess images, applying various trans-
formations such as rotation, shift,
shear, zoom, and horizontal flip,
augmenting the dataset to improve
model generalization. The training
process utilizes early stopping as a
regularization technique to prevent
overfitting.

iii. MobileNetv2

The MobileNetv2 (abbreviated as
MNetv2 in Table 7) model is trained
for age prediction involving pro-
cesses such as data pre-processing,
augmentation, model customization
and training. The image data
generators were employed to stan-
dardize the image data, ensuring
consistency in size and pixel val-
ues. Data augmentation such as
rotation, shifting, shearing, zoom-
ing and flipping are applied to di-
versify the training data and en-
hance model generalisation. Fine-
tuning of the MobileNetV2 base
model involves unfreezing selected
layers for customization with addi-
tional dense layers added for age pre-
diction. Early stopping was also im-
plemented to prevent overfitting.

iv. DenseNet

The DenseNet-121 model, initially
trained on ImageNet, has been
adapted from classifying discrete
categories to estimating continuous
age values, leveraging its deep con-
nectivity for effective age prediction
from images. Originally designed
to output probabilities for 1,000
classes, its final layer was reconfig-
ured to a single output suitable for
regression, streamlining the process
from class probabilities to direct age
estimation. The loss function was
transitioned to Mean Squared Error
(MSE), ideal for regression as it
robustly measures the discrepancies
between predicted and actual ages.

To ensure the model’s robustness

and adapt to various facial features,
image augmentation techniques like
Random Resized Crop and Random
Horizontal Flip were applied, in-
troducing variability and aiding in
learning from diverse facial presen-
tations. This is vital for adapt-
ing to the heterogeneous nature of
human ages. Additionally, nor-
malization using ImageNet’s mean
and standard deviation ensures the
input data aligns with the pre-
trained model’s expectations, opti-
mizing feature utilization.

v. CLIP

The CLIP model, initially trained
to understand a broad range of im-
ages with textual descriptions, has
been adapted for age prediction by
replacing its classification head with
a regression layer. This change al-
lows the model to estimate ages as
a continuous value rather than cate-
gorize into classes. The model now
uses Mean Squared Error (MSE) for
training, which effectively minimizes
the error between predicted and ac-
tual ages. Image augmentation tech-
niques like Random Resized Crop
and Random Horizontal Flip are em-
ployed to enhance robustness and
adaptability to variations in image
alignment and scale. Additionally,
the images are normalized using Im-
ageNet’s mean and standard devia-
tion to maintain compatibility with
pre-trained weights, optimizing the
model’s performance for age estima-
tion.

3.2.2 Audio Models

I. Neural Network for Audio

The initial deep-learning approach to
the age prediction task was to use a neural
network with the extracted features men-
tioned in section 1(b). These thirty input
features were fed into a feed-forward neural
network with five fully connected layers.
Dropout and elastic regularization (L1 + L2
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regularization) techniques were applied as
well.

The network was trained with PyTorch and
an Adam optimiser (weight decay factor =
0.0005). The train-val-test split was 0.8, 0.1,
and 0.1 respectively. The loss function used
was Root Mean Squared Error (RMSE).
Additionally, hyperparameter tuning was
carried out in the form of grid search, with
the hyperparameters being learning rate,
batch size, and number of epochs.

Over many iterations and runs, the highest
accuracy achieved was 64% (accuracy is mea-
sured as the prediction being within 6 years
of the actual age). The final train loss was 6.7
years and the final validation loss was 11.7
years, after 170 epochs with a learning rate
of 0.005, these were the best results obtained:

Metric Value
Accuracy 64.00%
Training Loss 6.7
Validation Loss 11.7

Table 8: Results of NN for audio

Figure 14: Training and validation loss
curves for NN for audio

However, as seen in Figure 13, the training
and validation curves diverge before plateau-
ing. This suggests that the network is not
able to generalize well, and unable to recog-
nize the complex relationships between the
data points. Thus, this approach was aban-
doned.

II. Transfer Learning for Audio

The second approach for the task of
age prediction from voice was to convert
the audio signals into visual representations
in the form of spectrograms. These images
could then be passed through strong vision
models. The models experimented with

for this approach were VGG-16 and Mo-
bileNetv2.

Figure 15: Sample spectrogram

For VGG-16, the model’s architecture re-
tained the convolutional base of VGG16,
including the feature extraction layers and
the average pooling layer. The classifier sec-
tion was modified to predict age, consisting
of a linear layer that reduces dimensionality
to 256, followed by ReLU activation and
dropout for regularization, culminating in
a final linear layer that outputs a scalar
prediction of age.

The second experiment was built on the Mo-
bileNetV2 (abbreviated as MNetv2 in Table
9) architecture known for its lightweight yet
powerful capabilities. This model utilized a
pre-trained MobileNetv2 version to harness
learned features from extensive datasets,
optimizing performance without intensive
training. The classifier of the MobileNetV2
was modified to accommodate a specific task
by replacing the original classifier layer with
a new linear layer that maps 1280 input
features to a single output, making it ideal
for age prediction.

For both experiments, the models were
trained on PyTorch with an Adam opti-
mizer. The loss function used was Root
Mean Square Error (RMSE). The table
below details the results of the experiments:
Model Training

Loss
Validation
Loss

Accuracy

VGG-16 7.0 12.0 44%
MNetv2 4.0 10.0 49%
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Table 9: Results of various models for im-
age

III. Wav2Vec 2.0

The third and final approach for this task
was leveraging the wav2vec2-large-robust-
24-ft-age-gender developed by audeering
and hosted on HuggingFace. This model
exploits the capabilities of Wav2Vec2, a
pre-trained model renowned for its efficient
and effective feature extraction from raw
audio data. The Wav2Vec2 architecture,
integral to this model, utilizes self-supervised
learning paradigms to capture rich, contex-
tual representations without the need for
explicit feature engineering, making it highly
suitable for age prediction.

At the core of the model is a classification
head termed ModelHead, specifically crafted
to process the hidden states generated by
Wav2Vec2 and produce an age estimate.
This head comprises a linear layer that
maps the hidden states to an intermediate
dimensionality (equal to the hidden size of
the model), followed by a dropout layer to
mitigate overfitting. A subsequent linear
layer transforms these features into a single
predicted age output. Crucially, the activa-
tion function employed in the ModelHead
is the hyperbolic tangent (tanh), which
normalizes the output of the neural network
to a range between -1 and 1, facilitating
efficient gradient propagation.

During inference, the model processes input
audio through the Wav2Vec2 architecture to
obtain a series of temporal hidden states.
These states are then aggregated, typically
by averaging, to condense the information
into a single vector that encapsulates the
essential characteristics of the input se-
quence, which is subsequently fed into the
age prediction head.

The model hosted on HuggingFace predicts
both age and gender, but the gender portion
of the prediction has been excluded in this
implementation. The authors of the original
paper (Burkhardt et al., 2023) boast an MAE
of 8.35 years. The model was tested against

our dataset (details in above sections) where
it achieved an accuracy of 55.6% (+- 6 years
tolerance).

Since this approach was the best performing,
it was incorporated into the final model for
multi-modal age prediction through speech
and face image input.

3.3 Fusion Modes

In this section, we delve into various fusion
modes employed in multimodal age pre-
diction models. While leveraging separate
models for each modality provides flexibility
and allows for specialized feature extrac-
tion, effectively fusing the outputs of these
individual models is essential for capturing
complementary information and enhancing
prediction accuracy. Fusion modes determine
how information from different modalities is
combined or integrated to produce the final
prediction. By exploring different fusion
strategies, ranging from early fusion to
late fusion and beyond, we aim to identify
the most effective approach for integrating
image and audio data in our multimodal age
prediction framework.

Point of fusion is a critical consideration in
multimodal fusion, determining where in
the pipeline the fusion occurs. Late fusion
involves processing each modality separately
and then combining the results at a later
stage. In contrast, early fusion combines raw
data from different modalities at the input
level, also known as feature-level fusion.
Joint fusion integrates modalities throughout
the entire pipeline, enabling the model to
capture interactions between them. Common
space fusion involves mapping data from
different modalities into a shared feature
space, known as cross-modal embeddings.

For our multimodal age prediction frame-
work, we opt for late fusion due to our
previous explorations of models handling the
two modalities separately. In late fusion,
various fusion modes can be employed to
combine the outputs of individual models.
Summation fusion involves summing up
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or concatenating features from different
modalities. Averaging fusion calculates the
average output among modalities, smoothing
out inconsistencies. Voting fusion employs
a feature voting mechanism based on the
modality with the highest accuracy. Classi-
fier (also known as weighted fusion) utilizes
probability distributions generated by each
classifier, with the final decision made by
combining these distributions.

4 Final Model

For our final model, we have adopted a
weighted average late fusion model with
our fine-tuned MobileNetV2 and Wav2Vec2
models.

Figure 16: Final model architecture

At the lower-level, we have two separate mod-
els for the audio and image input – these in-
puts come from the same video input in which
frames and the audio are extracted and fed
into its own separate pipelines. With the
extracted frames, each frame pre-processed
and subsequently fed into the fine-tuned Mo-
bileNetV2 model, and the predicted ages are
stored in a list which we then average out
to get the predicted age from image pipeline.
For audio, it is converted into signals and
fed into the wav2vec2 model, with its output
being the predicted age from audio pipeline.
Both of these lower-level models will output
an exact age estimation.
At a higher level these two outputs from the
separate modality pipelines are fused with
a weighted average late fusion, in which its
weight is accounted for based on the separate
models’ relative accuracy. This produces a
weighted predicted age which is then mapped
into age bands – giving us the final output.

4.1 User Interface

A simple UI was implemented which displays
the predicted age-band on top of the user’s
detected face. On the screen are also instruc-
tions on how to use the program and the sepa-
rate results from the audio model and image
model. Two random sentences are given to
the user to say. Libraries used are pyaudio,
cv2, and wonderwords.

Figure 17: UI implementation

5 Results

As our final model was a fusion of two
separate models, it is evaluated by weighing
out the results of the two models. Fused
model accuracy is calculated by weighing out
the relative normalized accuracy:

0.566÷(0.566+0.637)+0.637÷(0.566+0.637)
= 0.599554

Model Accuracy
wav2vec 2.0 55.6%
MobileNetv2 63.7%
Fused Model 59.96%

Table 10: Results of final model
However, this accuracy is deemed theoretical
as our final fused model has not been sampled
against a dataset for direct accuracy measure-
ments. In this calculation, we forgo the fact
that the fused model accounts for possible
volatility in age predictions, from the image
model, by averaging out the multiple frames
taken from video input. This might lead to
a higher predicted accuracy when measured
against our fused model implementation.
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6 Discussion

The attainment of a 59.96% theoretical ac-
curacy in multimodal age prediction models
using video input carries implications for
various use-cases in which age prediction can
be utilized.

While achieving a theoretical accuracy of
59.96% marks an accomplishment in the de-
velopment of multimodal age prediction mod-
els from video input, it’s essential to ac-
knowledge the limitations posed by the mod-
est accuracy level. The model’s perfor-
mance might still fall short of real-world ex-
pectations, particularly in scenarios where
precise age estimation is critical, such as
age-restricted content access or age-sensitive
healthcare interventions. Moreover, inaccu-
racies in age prediction could potentially lead
to misclassifications and subsequent implica-
tions in decision-making processes, like per-
sonalized content recommendations or tar-
geted advertising campaigns. It is also im-
portant to note that the reliability of age
verification mechanisms in ensuring online
safety may be compromised if the model
fails to accurately distinguish between age
groups. Therefore, while the model’s per-
formance represents progress, addressing its
limitations and striving for higher accuracy
levels remain imperative for realizing its full
potential across various applications.

7 Future Improvements

7.1 Refining Transfer Learning
on Models

Transfer learning involves leveraging knowl-
edge from pre-trained models on large
datasets to solve related tasks with smaller
datasets. Therefore, there can be various
strategies employed to further refine transfer
learning for age prediction specifically. One
of which is fine-tuning layers of pre-trained
models while keeping others frozen. This
allows the model to retain important features
learnt during pre-training while adapting to
specific characteristics of the prediction task.

Another approach would be to do systematic

hyperparameter tuning, including parameters
such as learning rate, batch size and regu-
larization strength which is essential for op-
timizing the transfer learning approach. Ex-
perimenting with various model architectures
or variations like incorporating regularization
techniques to prevent overfitting are vital for
refining an age prediction model.

7.2 Class Imbalance in Audio
Data

Curating a balanced dataset of speech, which
is varied in accents, gender, and of sizeable
duration would help in the training of audio
models immensely.
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